\(\int \frac {\sec ^2(c+d x) \tan ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx\) [834]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 91 \[ \int \frac {\sec ^2(c+d x) \tan ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {2 \sec ^5(c+d x)}{5 a^2 d}-\frac {2 \sec ^7(c+d x)}{7 a^2 d}+\frac {\tan ^3(c+d x)}{3 a^2 d}+\frac {3 \tan ^5(c+d x)}{5 a^2 d}+\frac {2 \tan ^7(c+d x)}{7 a^2 d} \]

[Out]

2/5*sec(d*x+c)^5/a^2/d-2/7*sec(d*x+c)^7/a^2/d+1/3*tan(d*x+c)^3/a^2/d+3/5*tan(d*x+c)^5/a^2/d+2/7*tan(d*x+c)^7/a
^2/d

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {2954, 2952, 2687, 276, 2686, 14} \[ \int \frac {\sec ^2(c+d x) \tan ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {2 \tan ^7(c+d x)}{7 a^2 d}+\frac {3 \tan ^5(c+d x)}{5 a^2 d}+\frac {\tan ^3(c+d x)}{3 a^2 d}-\frac {2 \sec ^7(c+d x)}{7 a^2 d}+\frac {2 \sec ^5(c+d x)}{5 a^2 d} \]

[In]

Int[(Sec[c + d*x]^2*Tan[c + d*x]^2)/(a + a*Sin[c + d*x])^2,x]

[Out]

(2*Sec[c + d*x]^5)/(5*a^2*d) - (2*Sec[c + d*x]^7)/(7*a^2*d) + Tan[c + d*x]^3/(3*a^2*d) + (3*Tan[c + d*x]^5)/(5
*a^2*d) + (2*Tan[c + d*x]^7)/(7*a^2*d)

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 276

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 2686

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a/f, Subst[
Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n -
1)/2] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])

Rule 2687

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 2952

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 2954

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Dist[(a/g)^(2*m), Int[(g*Cos[e + f*x])^(2*m + p)*((d*Sin[e + f*x])^n/(a - b*Sin[e +
f*x])^m), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \sec ^6(c+d x) (a-a \sin (c+d x))^2 \tan ^2(c+d x) \, dx}{a^4} \\ & = \frac {\int \left (a^2 \sec ^6(c+d x) \tan ^2(c+d x)-2 a^2 \sec ^5(c+d x) \tan ^3(c+d x)+a^2 \sec ^4(c+d x) \tan ^4(c+d x)\right ) \, dx}{a^4} \\ & = \frac {\int \sec ^6(c+d x) \tan ^2(c+d x) \, dx}{a^2}+\frac {\int \sec ^4(c+d x) \tan ^4(c+d x) \, dx}{a^2}-\frac {2 \int \sec ^5(c+d x) \tan ^3(c+d x) \, dx}{a^2} \\ & = \frac {\text {Subst}\left (\int x^4 \left (1+x^2\right ) \, dx,x,\tan (c+d x)\right )}{a^2 d}+\frac {\text {Subst}\left (\int x^2 \left (1+x^2\right )^2 \, dx,x,\tan (c+d x)\right )}{a^2 d}-\frac {2 \text {Subst}\left (\int x^4 \left (-1+x^2\right ) \, dx,x,\sec (c+d x)\right )}{a^2 d} \\ & = \frac {\text {Subst}\left (\int \left (x^4+x^6\right ) \, dx,x,\tan (c+d x)\right )}{a^2 d}+\frac {\text {Subst}\left (\int \left (x^2+2 x^4+x^6\right ) \, dx,x,\tan (c+d x)\right )}{a^2 d}-\frac {2 \text {Subst}\left (\int \left (-x^4+x^6\right ) \, dx,x,\sec (c+d x)\right )}{a^2 d} \\ & = \frac {2 \sec ^5(c+d x)}{5 a^2 d}-\frac {2 \sec ^7(c+d x)}{7 a^2 d}+\frac {\tan ^3(c+d x)}{3 a^2 d}+\frac {3 \tan ^5(c+d x)}{5 a^2 d}+\frac {2 \tan ^7(c+d x)}{7 a^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.88 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.38 \[ \int \frac {\sec ^2(c+d x) \tan ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\sec ^3(c+d x) (1344-714 \cos (c+d x)+128 \cos (2 (c+d x))-153 \cos (3 (c+d x))+64 \cos (4 (c+d x))+51 \cos (5 (c+d x))+3136 \sin (c+d x)-408 \sin (2 (c+d x))-48 \sin (3 (c+d x))-204 \sin (4 (c+d x))+16 \sin (5 (c+d x)))}{13440 a^2 d (1+\sin (c+d x))^2} \]

[In]

Integrate[(Sec[c + d*x]^2*Tan[c + d*x]^2)/(a + a*Sin[c + d*x])^2,x]

[Out]

(Sec[c + d*x]^3*(1344 - 714*Cos[c + d*x] + 128*Cos[2*(c + d*x)] - 153*Cos[3*(c + d*x)] + 64*Cos[4*(c + d*x)] +
 51*Cos[5*(c + d*x)] + 3136*Sin[c + d*x] - 408*Sin[2*(c + d*x)] - 48*Sin[3*(c + d*x)] - 204*Sin[4*(c + d*x)] +
 16*Sin[5*(c + d*x)]))/(13440*a^2*d*(1 + Sin[c + d*x])^2)

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.48 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.20

method result size
risch \(\frac {4 i \left (84 i {\mathrm e}^{5 i \left (d x +c \right )}+105 \,{\mathrm e}^{6 i \left (d x +c \right )}+8 i {\mathrm e}^{3 i \left (d x +c \right )}-91 \,{\mathrm e}^{4 i \left (d x +c \right )}+4 i {\mathrm e}^{i \left (d x +c \right )}+3 \,{\mathrm e}^{2 i \left (d x +c \right )}-1\right )}{105 \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )^{7} \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{3} d \,a^{2}}\) \(109\)
parallelrisch \(-\frac {8 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (3 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+12 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+9 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+11 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-7 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+42 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+35 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+35\right )}{105 d \,a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{7}}\) \(137\)
derivativedivides \(\frac {-\frac {1}{12 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {1}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {1}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {4}{7 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{7}}+\frac {2}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{6}}-\frac {16}{5 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}+\frac {3}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}-\frac {19}{12 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}+\frac {3}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {8}{64 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+64}}{d \,a^{2}}\) \(160\)
default \(\frac {-\frac {1}{12 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {1}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {1}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {4}{7 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{7}}+\frac {2}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{6}}-\frac {16}{5 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}+\frac {3}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}-\frac {19}{12 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}+\frac {3}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {8}{64 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+64}}{d \,a^{2}}\) \(160\)
norman \(\frac {-\frac {16 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5 d a}-\frac {8}{35 a d}-\frac {8 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d a}-\frac {8 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d a}-\frac {32 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{35 d a}-\frac {24 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{35 d a}-\frac {88 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{105 d a}+\frac {8 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15 d a}}{a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{7} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}\) \(171\)

[In]

int(sec(d*x+c)^4*sin(d*x+c)^2/(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

4/105*I*(84*I*exp(5*I*(d*x+c))+105*exp(6*I*(d*x+c))+8*I*exp(3*I*(d*x+c))-91*exp(4*I*(d*x+c))+4*I*exp(I*(d*x+c)
)+3*exp(2*I*(d*x+c))-1)/(exp(I*(d*x+c))+I)^7/(exp(I*(d*x+c))-I)^3/d/a^2

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.13 \[ \int \frac {\sec ^2(c+d x) \tan ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {4 \, \cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + {\left (2 \, \cos \left (d x + c\right )^{4} - 3 \, \cos \left (d x + c\right )^{2} + 25\right )} \sin \left (d x + c\right ) + 10}{105 \, {\left (a^{2} d \cos \left (d x + c\right )^{5} - 2 \, a^{2} d \cos \left (d x + c\right )^{3} \sin \left (d x + c\right ) - 2 \, a^{2} d \cos \left (d x + c\right )^{3}\right )}} \]

[In]

integrate(sec(d*x+c)^4*sin(d*x+c)^2/(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/105*(4*cos(d*x + c)^4 - 2*cos(d*x + c)^2 + (2*cos(d*x + c)^4 - 3*cos(d*x + c)^2 + 25)*sin(d*x + c) + 10)/(a
^2*d*cos(d*x + c)^5 - 2*a^2*d*cos(d*x + c)^3*sin(d*x + c) - 2*a^2*d*cos(d*x + c)^3)

Sympy [F]

\[ \int \frac {\sec ^2(c+d x) \tan ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\int \frac {\sin ^{2}{\left (c + d x \right )} \sec ^{4}{\left (c + d x \right )}}{\sin ^{2}{\left (c + d x \right )} + 2 \sin {\left (c + d x \right )} + 1}\, dx}{a^{2}} \]

[In]

integrate(sec(d*x+c)**4*sin(d*x+c)**2/(a+a*sin(d*x+c))**2,x)

[Out]

Integral(sin(c + d*x)**2*sec(c + d*x)**4/(sin(c + d*x)**2 + 2*sin(c + d*x) + 1), x)/a**2

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 356 vs. \(2 (81) = 162\).

Time = 0.23 (sec) , antiderivative size = 356, normalized size of antiderivative = 3.91 \[ \int \frac {\sec ^2(c+d x) \tan ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {8 \, {\left (\frac {12 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {9 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {11 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {7 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {42 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {35 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac {35 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + 3\right )}}{105 \, {\left (a^{2} + \frac {4 \, a^{2} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {3 \, a^{2} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {8 \, a^{2} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {14 \, a^{2} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {14 \, a^{2} \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac {8 \, a^{2} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - \frac {3 \, a^{2} \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} - \frac {4 \, a^{2} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}} - \frac {a^{2} \sin \left (d x + c\right )^{10}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{10}}\right )} d} \]

[In]

integrate(sec(d*x+c)^4*sin(d*x+c)^2/(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

8/105*(12*sin(d*x + c)/(cos(d*x + c) + 1) + 9*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 11*sin(d*x + c)^3/(cos(d*x
 + c) + 1)^3 - 7*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 42*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 + 35*sin(d*x + c
)^6/(cos(d*x + c) + 1)^6 + 35*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 + 3)/((a^2 + 4*a^2*sin(d*x + c)/(cos(d*x + c
) + 1) + 3*a^2*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 8*a^2*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 14*a^2*sin(d*
x + c)^4/(cos(d*x + c) + 1)^4 + 14*a^2*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 8*a^2*sin(d*x + c)^7/(cos(d*x + c
) + 1)^7 - 3*a^2*sin(d*x + c)^8/(cos(d*x + c) + 1)^8 - 4*a^2*sin(d*x + c)^9/(cos(d*x + c) + 1)^9 - a^2*sin(d*x
 + c)^10/(cos(d*x + c) + 1)^10)*d)

Giac [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.60 \[ \int \frac {\sec ^2(c+d x) \tan ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {\frac {35 \, {\left (3 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 3 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right )}}{a^{2} {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{3}} - \frac {105 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 945 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 1820 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 2450 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 1617 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 749 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 122}{a^{2} {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}^{7}}}{840 \, d} \]

[In]

integrate(sec(d*x+c)^4*sin(d*x+c)^2/(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

-1/840*(35*(3*tan(1/2*d*x + 1/2*c)^2 - 3*tan(1/2*d*x + 1/2*c) + 2)/(a^2*(tan(1/2*d*x + 1/2*c) - 1)^3) - (105*t
an(1/2*d*x + 1/2*c)^6 + 945*tan(1/2*d*x + 1/2*c)^5 + 1820*tan(1/2*d*x + 1/2*c)^4 + 2450*tan(1/2*d*x + 1/2*c)^3
 + 1617*tan(1/2*d*x + 1/2*c)^2 + 749*tan(1/2*d*x + 1/2*c) + 122)/(a^2*(tan(1/2*d*x + 1/2*c) + 1)^7))/d

Mupad [B] (verification not implemented)

Time = 15.99 (sec) , antiderivative size = 231, normalized size of antiderivative = 2.54 \[ \int \frac {\sec ^2(c+d x) \tan ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\frac {8\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}}{35}+\frac {32\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{35}+\frac {24\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{35}+\frac {88\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{105}-\frac {8\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{15}+\frac {16\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{5}+\frac {8\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{3}+\frac {8\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{3}}{a^2\,d\,{\left (\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )-\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}^3\,{\left (\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}^7} \]

[In]

int(sin(c + d*x)^2/(cos(c + d*x)^4*(a + a*sin(c + d*x))^2),x)

[Out]

((8*cos(c/2 + (d*x)/2)^10)/35 + (32*cos(c/2 + (d*x)/2)^9*sin(c/2 + (d*x)/2))/35 + (8*cos(c/2 + (d*x)/2)^3*sin(
c/2 + (d*x)/2)^7)/3 + (8*cos(c/2 + (d*x)/2)^4*sin(c/2 + (d*x)/2)^6)/3 + (16*cos(c/2 + (d*x)/2)^5*sin(c/2 + (d*
x)/2)^5)/5 - (8*cos(c/2 + (d*x)/2)^6*sin(c/2 + (d*x)/2)^4)/15 + (88*cos(c/2 + (d*x)/2)^7*sin(c/2 + (d*x)/2)^3)
/105 + (24*cos(c/2 + (d*x)/2)^8*sin(c/2 + (d*x)/2)^2)/35)/(a^2*d*(cos(c/2 + (d*x)/2) - sin(c/2 + (d*x)/2))^3*(
cos(c/2 + (d*x)/2) + sin(c/2 + (d*x)/2))^7)